
Parichute: Generalized Turbocode-Based Error Correction
for Near-Threshold Caches∗

Timothy N. Miller, Renji Thomas, James Dinan, Bruce Adcock, Radu Teodorescu
Department of Computer Science and Engineering

The Ohio State University
{millerti, thomasr, dinan, adcockb, teodores}@cse.ohio-state.edu

Abstract
Energy efficiency is a primary concern for microprocessor de-
signers. A very effective approach to improving the energy ef-
ficiency of a chip is to lower its supply voltage to very close to
the transitor’s threshold voltage, into what is called the near-
thresold region. This reduces power consumption dramati-
cally but also decreases reliability by orders of magnitude,
especially for SRAM structures such as caches.

This paper presents Parichute, a novel and powerful error
correction technique based on turbo product codes that al-
lows caches to continue to operate in near-threshold, while
trading off some cache capacity to store error correction
information. Our Parichute-based cache implementation is
flexible, allowing protection to be disabled in error-free high
voltage operation and selectively enabled as the voltage is
lowered and the error rate increases. Parichute is also self-
testing and variation-aware, allowing selective protection of
cache sections that exhibit errors at higher supply voltages
because of process variation. Parichute achieves significantly
stronger error correction compared to prior cache protec-
tion techniques, enabling 2× to 4× higher cache capacity
at low voltages. Our results also show that a system with a
Parichute-protected L2 cache can achieve a 34% reduction in
system energy (processor and DRAM) compared to a system
operating at nominal voltage.

1 Introduction
The computing devices of tomorrow, from smartphones to
desktops to servers, are expected to become increasingly
energy-conscious. In portable devices, the demand for lower
power is driven by expectations for lighter devices with
longer battery life. In the desktop and server markets, hard
limits on thermal design power [22] of chips will constrain
the growth in the number of cores in future general-purpose
CMPs [37]. Maintaining the expected growth in performance
while keeping power under control will require dramatic im-
provements in the energy efficiency of microprocessors.

A very effective approach to improving the energy effi-
ciency of a chip is to lower its supply voltage (Vdd) to very
close to the transitor’s threshold voltage (Vth), into what is
called the near-threshold (NT) region [8, 13, 21]. This is
significantly lower than what is used in standard dynamic

∗This work was supported in part by the National Science Foundation
under grant CNS-0403342.

voltage and frequency scaling (DVFS), resulting in dramatic
reductions in power consumption (up to 100×) with about
a 10× loss in maximum frequency. Even with the loss in
performance, chips running in near-threshold often achieve
significant improvements in energy efficiency. In fact, prior
work has shown that the lowest energy per instruction is
often achieved in the sub-threshold or near-threshold re-
gions [8, 13]. In a power-constrained CMP, near-threshold
operation will allow more cores to be powered on (albeit at
much lower frequency) than in a CMP at nominal Vdd. De-
spite lower individual core throughput, aggregate throughput
can be much higher, especially for highly parallel workloads.
This makes NT CMPs very attractive for systems ranging
from portable devices to energy-efficient servers.

The energy reduction in NT, however, comes at the cost of
severe degradation in reliability. Large on-chip SRAM struc-
tures such as the L2 and L3 caches are the most vulnerable
to errors [9, 13]. They are optimized for area and power and
therefore built with the smallest transistors. In near-threshold,
such a cache can experience error rates that exceed 4%, ren-
dering an unprotected structure virtually useless. Thus, in or-
der to harness the energy savings of NT operation, the high
error rates of large SRAM structures must be addressed.

This paper proposes Parichute, a novel forward error cor-
rection (FEC) technique based on a generalization of turbo
product codes that is powerful enough to allow caches to con-
tinue to operate reliably in near threshold with error rates ex-
ceeding 7%. Parichute leverages the power of iterative decod-
ing to achieve very strong correction ability while having a
relatively low impact on cache access latency. Our Parichute-
based cache implementation dynamically trades off some
cache capacity to store error correction information. It is
flexible and adaptive, allowing protection to be disabled in
error-free high voltage operation and selectively enabled as
the voltage is lowered to near-threshold and the error rate in-
creases. Parichute is self-testing and variation-aware, allow-
ing selective protection of cache sections that exhibit errors at
higher supply voltages due to process variation.

Compared to previous cache error protection solutions tar-
geting high error rates [10, 19], Parichute provides signif-
icantly stronger error correction for the same parity stor-
age overhead, with similar decoding hardware costs and
only slightly higher decoding latency. We demonstrate that
Parichute’s error correction is significantly more effective
than a state of the art solution based on Orthogonal Latin

Square Codes (OLSC) [10]. At near-threshold voltages a
Parichute-protected cache has between 2× and 4× the ca-
pacity of a cache protected by OLSC.

We also show that a processor with a Parichute-protected
L2 cache running in near-threshold achieves a 34% reduc-
tion in system energy (processor and DRAM) compared to
a system operating at nominal voltage. If the same system
uses standard SECDED (Single Error Correction, Double Er-
ror Detection) protection for its cache, it achieves almost no
reduction in energy due to the much lower cache capacity and
the resulting increase in miss rates.

We synthesized a prototype implementation of the
Parichute hardware for 45nm CMOS to show that it can be
implemented with low hardware overhead and would add lit-
tle additional access latency to an L2 cache. The Parichute
encoder and decoder logic occupies less than 0.06mm2 of die
area and uses less than 12mW, negligible overhead for a state
of the art processor.

Overall, this paper makes the following contributions:

• Introduces Parichute ECC, a novel error correction tech-
nique based on a generalization of turbo product codes
that is very powerful, adaptive, lightweight, and amenable
to efficient hardware implementation.

• Presents a Parichute-enabled adaptive cache architecture,
designed to operate efficiently in very high error rate envi-
ronments at near-threshold and in error-free environments
at nominal voltage.

• Evaluates the power and area overheads of a Parichute
ECC prototype synthesized for 45nm CMOS.

• Demonstrates the energy benefits of near threshold oper-
ation of a processor with Parichute-protected caches.

Section 2 provides an overview of near-threshold operation
and its reliability implications, as well as an overview of other
error correction schemes. Section 3 describes the Parichute
error correction solution. Section 4 details the architecture of
a Parichute-protected cache. Section 5 presents a prototype
design of the Parichute hardware. An experimental evalua-
tion is presented in Sections 6 and 7. Finally, Section 8 details
related work, and Section 9 concludes.

2 Background
This section provides background on near-threshold opera-
tion, focusing on the energy benefits and reliability challenges
of this technique. It also presents a few existing error correc-
tion techniques relevant to this work.

2.1 Near Threshold Computing

Standard dynamic voltage and frequency scaling typically re-
duces Vdd to no lower than 70% of the nominal level in or-
der to guarantee reliable chip operation. In near-threshold
operation, the Vdd is scaled more aggresively to 25 − 35%
of nominal levels, close to the transistor threshold voltage
(Vth) [13]. With Vdd this low, transistors no longer operate
in the saturation region. As a result, chip power consumption
is around 100× lower than at nominal Vdd. These power sav-
ings, however, come at a cost of decreased switching speeds
(about 10×) and decreased reliability.

Transistors in near threshold are much more affected by
process variation. Process variation is caused by manufac-
turing difficulties in very small feature technologies [4] and
refers to deviations in transistor parameters beyond their nom-
inal values. Several parameters are impacted by variation. Of
key importance is the threshold voltage because it directly
impacts a transistor’s switching speed and leakage power.
Process variation has both random and systematic effects.
The systematic component of variation is spatially correlated,
meaning that transistors close to each other on the die tend
to have similar characteristics. In near-threshold, because
Vdd is very close to Vth, variation in Vth will have a much
more pronounced effect on transistor speed and leakage cur-
rent compared to nominal voltage. At nominal Vdd, variance
in transistor delay tends to be relatively small, but it increases
significantly as Vdd is lowered towards Vth.

Large SRAM arrays are especially vulnerable to variation
at low Vdd [1, 6, 7, 25, 41]. They are optimized for area and
power and therefore built using the smallest transistors, which
are the most affected by random variation. Random varia-
tion among the transistors in an SRAM cell can create imbal-
ance between the back-to-back inverters, and as the voltage is
lowered the cell may become unable to reliably hold a value.
Variation can also make the cell too slow to access; although
it may hold a value, one or both access transistors may pull
down its bit-line so slowly that the cell cannot be read in a
reasonable time.

2.2 Error Correcting Codes

Error-correcting codes (ECC) are functions for encoding data
in a way that allows errors to be detected and corrected. Sim-
ple ECCs are used in server memory [12, 28, 33] to toler-
ate bit upsets that occur as a result of faulty RAM cells, sin-
gle event upsets, and other disruptive factors such as voltage
fluctuations [24]. More sophisticated codes are used in ev-
erything from digital communications to error-prone storage
media such as flash drives and hard disks.

All ECCs require redundant bits, or parity, to be added to
the data bits being protected. A grouping of data bits and their
corresponding parity bits form a code word. The number of
bits that differ between two error-free code words (called the
Hamming distance) dictates how many errors the ECC can
correct in each codeword. An ECC with minimum Hamming
distance of d can correct �(d− 1)/2� errors.

2.2.1 Single-Bit Error Correcting Codes

The most common ECCs correct single bit errors and are ref-
ered to as SEC (Single Error Correction) codes. They have a
minimum Hamming distance of 3, where a 1-bit error creates
a code word that is nearest to only one error-free code word.
Adding one additional parity bit, for a minimum Hamming
distance of 4, allows correction of 1-bit errors and detection of
2-bit errors. This is called a SECDED code (Single Error Cor-
rection, Double Error Detection). Parichute uses SECDED
codes as part of a more sophisticated protection scheme.

2.2.2 Orthogonal Latin Square Codes

A more powerful ECC based on Orthogonal Latin Square
Codes (OLSC) [17] was used for cache protection in [10].

OLSC creates a parity matrix from orthogonal groupings
(“latin squares”) of data bits and associates parity to them.
Given a word with m

2 data bits, up to m/2 errors can be cor-
rected. OLSC correction involves a single-step majority vot-
ing across multiple parity encodings for each data bit. This
requires a significant amount of hardware but can be imple-
mented with low latency [10]. Although OLSCs are suitable
for moderate error rates, they have limited performance in the
presence of the high error rates observed at deep NT.

2.2.3 Turbo Product Codes

A Product Code [15] is an ECC made from a composition
of multiple short codes that make up a long code. Data is
typically arranged in a 2D matrix, and short code words are
computed from the data in each column and each row. This
creates a much more powerful ECC by applying a simpler
ECC to two orthogonal permutations of the same data. Vari-
ous ECCs have been used for the short code, as in [3, 16, 29].

A product code is called a Turbo Product Code (TPC) if
iterative decoding for the long code word is performed by ar-
ranging short code decoders in a cycle; corrections are com-
puted for rows and columns separately, and decoders itera-
tively exchange intermediate results. The orthogonal data lay-
out allows each bit to receive protection twice, once in its col-
umn and once in its row. Errors uncorrectable with respect to
one permutation may be correctable with respect to the other.
Moreover, an error that is uncorrectable if each permutation
is considered independently may be correctable through iter-
ative decoding, where each correction builds on the results of
the previous.

Parichute generalizes block TPC by using more data per-
mutations to make more flexible use of the storage space used
to hold parity. TPCs are typically used for signal commu-
nications, where processing power is much greater than the
channel bit rate, making it practical to use probablistic (soft-
decision) decoding. To minimize latency and logic overhead,
Parichute correction is entirely binary (hard-decision).

3 The Parichute ECC
Parichute defines two mechanisms: Parichute ECC, a novel
error correction algorithm, and the Parichute Cache architec-
ture which applies Parichute ECC to maximize cache capac-
ity at ultra-low voltages. Parichute ECC is an enhancement to
turbo product codes that has strong correction ability, efficient
use of parity bits, and low decode latency.

3.1 Generalized Turbo Product Codes

The Parichute Cache protects data by storing parity bits in
other cache lines, using either whole lines or fractional lines.
Under these constraints a straight-forward application of TPC
as in [16] is too rigid and suboptimal because it requires a
fixed number of parity bits that may not match well with the
cache line size. For instance, given N data bits, a TPC that
uses SECDED as a short code, requires 2H�

√
N� parity bits,

where H is the number of parity bits for �
√
N� data bits. For a

512-bit cache line, the data is arranged roughly into a 23×23
matrix, where each column and each row requires 6 parity
bits, for a total of 276. These do not fit in half of a cache line

and would waste space in a full line.
Considering these inefficiencies, we have designed

Parichute ECC to offer a more flexible layout. Parichute ECC
allows the selection of an arbitrary number of data permuta-
tions and much greater flexibility in the number of parity bits
mapped to the long data word. These make Parichute ECC a
more space-efficient and stronger ECC than standard TPC.

For a given data word size and available parity space, mul-
tiple configurations are possible under certain constraints.
Parichute ECC uses SECDED as its short code to protect data
slices. The short data slice length is S ≤ 2H−1 − H , where
H is the number of SECDED parity bits. With Parichute, we
can impose an additional constraint on the total number of
parity bits for the long code. For a long data word of size N ,
let Mmax be the budget for parity bits, M the actual number
of parity bits used, and P the number of permutations. The
following relation must hold:

�N/S� × P ×H = M ≤ Mmax

There are typically multiple valid combinations of values
for H , P , and S. For instance, if cache lines are 512 bits, and
the goal is to fit parity into half of a cache line (Mmax = 256),
one option is to use 7-bit parity words (57-bit data slices) and
4 data permutations. Another would be to use H = 6 (S =
26), which would require that P = 2. In our implementation
we evaluate all feasible configurations and pick the best one.

3.2 Optimization of the Parity-Data Association

With Parichute ECC, data permutations are no longer trivially
orthogonal, making a good mapping of parity to data very im-
portant for maximizing correction ability. Each permutation
offers an opportunity for correcting a subset of all possible
errors, and the correction ability improves when the possibil-
ity of uncorrectable errors in multiple permutations is mini-
mized. To that end, the number of times any two data bits are
protected by the same parity word in multiple permutations
should be minimized. This is because if both bits fail and are
protected by the same parity word in multiple permutations,
they will be uncorrectable in all of these permutations.

Finding the set of optimal permutations is NP-hard. We
therefore use a greedy randomized search of the solution
space to find a good solution.

3.3 Parichute Error Correction Example

Figure 1 shows an example of correcting a corrupted data line
protected by Parichute ECC. In this example, a 512-bit data
line is protected by 252 parity bits in 9 slices. There are 4
permutations, and each is decoded by a dedicated corrector.
There are five corrupted bits: a, b, c, d, and e. Because each
permutation arranges data differently, the errors end up in dif-
ferent slices in each corrector. For instance bit a is in slice 0
for corrector 0 (C0

0) and in slice 8 for corrector 1 (C1
8).

On cycle 0, corrector 0 can only correct bit a in C
0
0 because

the rest are in multi-bit errors in their slices. Since SECDED
is used, only single-bit errors can be corrected in each slice.
Corrector 1 can correct bit d in C

1
8 , and corrector 2 can cor-

rect bit b in C
2
8 . While corrector 3 can fix both e and b, the

3-bit error in C
3
1 is mistaken for a 1-bit error, resulting in the

x be

be

a be cd ae bc d ac de b adc e b

a x be cd ae bc d ac de b adc e b

ac de b

Corrector 0 Corrector 1 Corrector 2 Corrector 3

Cycle 0

Cycle 1

Cycle 2

adc e bCycle 3

a

e
d

c b

d
b

x

Figure 1: Parichute error correction example. Bits a, b, c, d, and e are corrupted, and arrows indicate the propagation of corrected bits. The
successful correction path is emphasized.

additional corruption of bit x. Following the successful cor-
rection path, on cycle 1, corrector 1 corrects bits e and d, and
on cycle 2 corrector 2 corrects bits b and c. Finally, on cycle
3, the correction is complete, and the data is sent to its desti-
nation in cycle 4. Note that the vast majority of 5-bit errors
will require only one correction cycle.

4 Parichute Cache Architecture
We use Parichute ECC to design an L2 cache that is resilient
to the high error rates encountered in near-threshold opera-
tion. The Parichute Cache is variation-aware and adaptive,
allowing protection to be disabled in error-free high voltage
operation and selectively enabled in near-threshold as errors
increase. Hardware support for encoding and correction is
added to the cache controller, and all reads and writes to cache
lines that need protection will go through this hardware. A
high-level overview is shown in Figure 2.

 T
ag

 A
rra

y

Cache

Encoder

Decoder

Data In

Parity

Data Out
Parity

Data

Bypass

CRC

CRC

Figure 2: High-level overview of Parichute cache architecture. For
lines requiring no protection, decoding is bypassed, which reduces
access latency.

4.1 Hardware for Parichute Encoding and Correction

Parichute uses a hardware encoder, shown in Figure 3(a), to
generate multiple permutations of data through a hard-wired
permutation network. For each permutation, a parity encoder
computes the SECDED parity for each data slice in the per-
mutation. The parity bits of all slices are concatenated into a
parity group, shown in Figure 3(b). Finally, the concatenation
of all parity groups constitutes a Parichute parity block.

In parallel with parity generation, the encoder also gener-
ates a CRC for the data to be written to the cache and stores it

in the tag array. This CRC is used by the decoder to determine
if the data was successfully corrected and to verify potential
corruption of unprotected data.

The Parichute decoder is responsible for correcting cor-
rupted data. It is composed of P correctors, arranged in a
circular path, illustrated in Figure 4. Each corrector loads its
own copy of the data and parity bits. A corrector is hard-
wired to decode one data permutation utilizing M/P parity
bits. For each S-bit data slice and its corresponding H-bit
parity word, the corrector indicates either that a specific bit
out of the S +H is corrupt or that two unknown bits are cor-
rupt. After correction is applied, data and parity propagate to
the next corrector.

A CRC is generated for the current data in parallel with
the next correction cycle. This CRC is compared to the CRC
from the tag to determine when the correction is complete.
When there is a CRC match, correction stops, and the cor-
rect data is taken from the registers in the following corrector.

Data Par 0 Par 1 ... Par NCRC

Data

Corrector 0

Data

Corrector 1

CRC
enc

CRC
enc=

=
match

match

Parity

Parity

... ...

Figure 4: Diagram of full decoder circuit, with multiple parallel cor-
rectors in a cycle. Each corrector applies corrections based on its
own parity group (indicated in gray) and then passes data and par-
ity to the next corrector. Data is also validated against a CRC to
determine if correction has succeeded.

Data Block (cache line)

Parity
encoders

Parity
encoders

Parity
encoders

PW PW PW ... PW PW PW ... PW PW PW

Parity Group 0 Parity Group 1 Parity Group N

Permutation Network

Permutation 0 Permutation 1 Permutation N Data Slice 0 Data Slice 1 Data Slice 2 ... Data Slice N

Parity
encoder

Parity
word 0

Parity
word 1

Parity
word 2 ... Parity

word N

Parity
encoder

Parity
encoder

Parity
encoder

Parity Group N

...

Permutation N

(a) (b)
Figure 3: (a) Complete parity encoding data-path. The permutation network generates multiple data permutations that are sent to a set of
parity encoders, which produce sections of the complete parity block. (b) Detail on parity encoders for one permutation.

For uncorrectable errors, decode terminates through a time-
out, and a correction exception is reported. Uncorrectable
lines are flagged through testing and will not be used when the
cache is at a voltage level they cannot support (Section 4.3.2).

4.2 Parity Storage and Access

Parichute parity for a line is stored in a different way (of as-
sociativity) of the same cache set as the data. As protection
is added to more data lines, the associativity of each set de-
creases. To allow concurrent access to the data line and its
associated parity, we organize the cache such that each way
of a set is in a separate bank, and we assume an access bus
wide enough to accommodate both data and parity, as in [10].

For each line, the tag is extended to store the CRC as well
as a pointer to indicate where the corresponding parity, if any,
is stored. For an 8-way cache with half-line parity, a 4-bit
pointer is required; for whole-line parity, 3 bits are sufficient.

The tag array also needs some form of protection. Since
the tag array occupies a small fraction of the total area of
the cache, we choose to harden it by using larger transis-
tors or more robust 8T or 10T SRAM cells [9]. Alternatively
Parichute ECC could be used to protect tag entries.

4.3 Dynamic Cache Reconfiguration

Parichute protection is dynamically enabled when the sup-
ply voltage is lowered. The naı̈ve approach is to enable pro-
tection for all lines when the voltage drops below a certain
point. However, because of process variation, errors have a
non-uniform distribution, which makes some lines more vul-
nerable than others. We therefore propose a variation-aware
protection algorithm that considers the relative vulnerability
of cache lines in the assignment of protection.

Lightweight testing is performed either post-
manufacturing or at boot time to determine the relative
vulnerability of cache lines in near-threshold operation.
Using these rankings, a cache configuration that maximizes
capacity can be selected. These configurations are stored
in on-chip ROM or main memory and loaded before the
processor transitions into near-threshold.

4.3.1 Classifying Cache Lines

Testing is performed with simple built-in self test (BIST) cir-
cuitry [11] that writes and reads each line. Two test patterns
are written to each line: one containing all 0’s and one with all
1’s. The patterns are read through the correctors, which also
receive the precomputed parity for those bit patterns. Lines
are classified based on the correction outcome. Those with
no errors are marked as Good. Bad lines are ones that have
correctable errors. Ugly lines have errors in number and posi-
tion that render them completely unable to reliably store data,
even with protection, and therefore should be disabled.

Testing can also be performed on-line. A tested bit is added
to the tag for each cache line. On power-up, all tested flags
are cleared. Before writing to an untested line, a test sequence
is initiated, the line is classified, and its tested bit is set. Line
classification is refined throughout execution to account for
transistor aging and other effects. A Good line can start to
experience errors, which we detect through CRC checks but
cannot correct. The line is then reclassified as Bad. A Bad
line can also be downgraded to Ugly if correction fails.

4.3.2 Variation-aware Protection

We examine multiple levels of variation-awareness that can
inform decisions about which lines need protection. A
variation-unaware solution will protect all cache lines. Identi-
fying which lines are Good allows them to not have associated
parity, which increases cache capacity. Adding the ability to
distinguish Ugly lines allows these to be completely disabled,
which avoids wasting cache capacity by adding protection to
lines that cannot be corrected. Figure 5 illustrates an example
of variation-aware data and parity mapping.

We have also considered ranking Bad lines according to the
their relative “quality.” Parichute parity bits are more vulner-
able than data bits, because while each data bit is protected
once for each permutation, parity bits are only indirectly pro-
tected through the data. If parity is stored in relatively “bet-
ter” lines, overall capacity should increase because more lines
should be correctable. However, in practice we find little in-
crease in cache capacity as a result of this optimization.

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

Ta
g

A
rr

ay

Data 0 Par Par Data 1 Data 2 Data 3 Unusable Unusable

Good Bad Ugly

1 3Par2

Figure 5: Example data and parity assignment for a cache set of
an 8-way set associative cache. Data 0 is assigned to a Good line
without parity. Data 1–3 are and their associated parity are assigned
to Bad lines (parity 1 and 2 share a line). Ugly lines are disabled.

4.4 Cache Access Latency

Parichute adds some additional latency to cache accesses. All
writes incur one cycle of additional latency because of CRC
and/or parity generation. For writes to Good lines, only the
CRC is generated and stored in the tag. For writes to Bad
lines, parity is also generated and stored simultaneously with
data in a different cache way.

Reads from Good lines are validated against the CRC,
which incurs one cycle additional latency. Reads from Bad
lines require that both data and parity be sent to the decoding
hardware for correction. Parichute correction introduces vari-
able access latency, although latency tends to be small even
for significant numbers of errors (average of 4 decode cycles).

5 Prototype of Parichute Hardware
We designed and synthesized a circuit that implements a
Parichute encoder and decoder. This prototype was coded
in synthesizable Verilog and implements one of the Parichute
configurations that yielded the best results in terms of cache
capacity and is the same configuration used in our experi-
mental evaluation. Using the notations in Section 3.1, the en-
coder and decoder target cache lines with N = 512 data bits,
has P = 4 permutations, and utilizes data slices of S = 57
bits with H = 7 parity bits. The total number of parity bits
M = 252 fits well in half of a cache line.

The 4-permutation Parichute encoder is comprised of 36
SECDED encoders. Each SECDED encoder takes in S =
57 bits and outputs H = 7 parity bits. Each output of the
SECDED encoder is an XOR of 31 data bits. Parity bits are
computed such that if one or two of the 64 data or parity bits is
inverted, a “syndrome” can be computed that indicates either
which bit is wrong or that there are two incorrect bits.

The decoder consists of four correctors, one for each per-
mutation. Each corrector takes as input N = 512 data bits
and the M/P = H · 9 = 63 parity bits that correspond to its
permutation. Each corrector is comprised of 9 syndrome gen-
erators that determine incorrect data or parity bits. Each syn-
drome generator takes as input S = 57 data bits and H = 7
parity bits and computes a 7-bit syndrome.

The Parichute encoder and decoder also use CRC gen-
erators to calculate data CRCs according to the CRC-16-
CCITT [20] standard, which has a generator polynomial of
x
16+x

12+x
5+1. We generated Verilog code that computes

the entire CRC in one step, where each bit of the resulting
CRC is an even parity (XOR reduction) of a particular sub-

set of the data bits. The Parichute encoder uses one CRC
generator to compute the CRC in parallel with parity gener-
ation. The Parichute decoder uses four CRC generators (one
for each corrector) to compute the CRC for the data being
decoded. At each correction step CRC is computed and com-
pared to the correct CRC for that data. The CRC generator
plus comparator require 14 levels of logic that create a long
critical path. To break this path, we register the output of the
CRC encoder and perform the comparison against the correct
CRC in the following cycle. On a CRC match the data sent to
the CPU is taken from the register in the subsequent corrector.

Parichute’s hardware was synthesized for 45nm CMOS
technology. First, Formality [35] was used to check the Ver-
ilog HDL description. Once verified, the Verilog HDL was
linked to Nangate’s Open Cell Library [27]. To work with
Synopsys, the Liberty standard delay format library was con-
verted to a Synopsys compatible database. This database was
used to synthesize the logic with a clock constraint of 1ns.
The design was compiled using Synopsys Design Compiler
[36] iteratively to achieve timing closure. The resulting com-
piled design was then verified post-synthesis using Formality
for functional correctness. The synthesized chip is used to
determine critical path details, gate count, area, and power
estimate. Section 7.5.1 provides synthesis results.

6 Evaluation Methodology
To evaluate Parichute, we use the following infrastructure.
An SRAM model at near-threshold and a process variation
model are used to estimate error rates and distributions for an
L2 cache. Multiple correction models, including Parichute,
OLSC and SECDED, are applied to the cache model to de-
termine cache capacity and correction latency under various
error conditions and configurations. The resulting cache ca-
pacities and access latencies are used by a multicore proces-
sor model to evaluate the impact of the cache protection tech-
niques on the performance and energy of a state of the art
processor and memory. The Parichute prototype is used to
determine critical path delay, area, and power consumption
for the Parichute hardware, included in the processor model.

6.1 SRAM Model at Near Threshold with Variation

To model SRAM cells in near threshold and in the presence
of process variation, we performed SPICE simulations of an
SRAM block implemented in 32nm CMOS. We used the Ca-
dence Spectre Circuit Simulator (IC611 package), with the
BSIM4 V2.1 32nm PTM HP transistor model [42]. Read,
write and access failure tests were conducted for a single 6T
SRAM cell, along with a bit-line conditioning circuit for pre-
charging the bit lines and a sense circuit for reading the mem-
ory cell. This model is used to determine the dynamic and
leakage power and read and write delays for different supply
and threshold voltage values. The parameters of NMOS and
PMOS transistors were simultaneously swept between 0.15-
0.9V for the Vdd and between ±30% of nominal Vth.

We use VARIUS [32] to model process variation and we
consider both random and systematic effects. When mod-
eling systematic variation we make the simplifying assump-
tion that transistors are fully correlated within a cache bank

Shared L2 8-way 2 MB, 10-16 cycle access
L1 data cache 8-way 16K, 1-cycle access
L1 instruction cache 2-way 16K, 1-cycle access
Branch prediction 2K-entry BTB, 12-cycle penalty
Fetch/issue/commit width 3/3/3
Register file size 40 entry
Technology 32nm, 3GHz (nominal)
Nominal Vdd 0.9V
Near threshold Vdd 0.3375-0.375V
Vth µ, 150mV
Vth σ σran = 4.8% and σsys = 1.8%

Table 1: Summary of the architectural configuration.

and uncorrelated across banks. Random variation is mod-
eled as a normal distribution across all bit cells. For sys-
tematic and random components of variation, σran = 4.8%
and σsys = 1.8%. Variation parameter values are taken from
ITRS [18] predictions and [32].

We use the variation model to generate distributions of
threshold voltages (Vth). Using the SRAM access failure data
(reads and writes) as a function of Vdd and Vth from the SPICE
simulations, we generate error distributions, which we use to
model cache bit failures.

6.2 Cache Error Correction Models

We built models for the three cache protection schemes we
evaluate: Parichute, SECDED and OLSC. We use these mod-
els in Monte Carlo simulations of 100 cache profiles with
variation, at multiple voltages. We modeled 8-way 2 MB
caches, with 512-bit lines. For each line a random data pat-
tern is assigned, and parity is computed. Bits are corrupted
randomly for each line according to a probability distribution
given by the variation pattern and error model. Error correc-
tion is attempted with each cache protection scheme. Only
corrections of entire lines are considered successful.

6.3 Near-Threshold Processor Model

To evaluate the impact of Parichute-enabled caches on per-
formance and energy, we use a modified version of the SESC
simulator [31]. SESC is configured to simulate a system sim-
ilar to the Intel Core 2, with a Parichute-protected L2 cache.
For the performance and energy simulations, we use the
SPEC CPU2000 benchmarks, SPECint (crafty, mcf, parser,
gzip, bzip2, vortex, and twolf) and SPECfp (wupwise, swim,
mgrid, applu, apsi, equake, and art). We decrease the sizes
of the L1 and L2 caches to 16KB and 2MB respectively to
increase the pressure on the L2 cache from the SPEC bench-
marks. Table 1 summarizes the architecture configuration.

We use SESC, augmented with dynamic power models
from Wattch [5] and CACTI [26], to estimate dynamic power
at a reference technology and frequency. We scale these num-
bers using our own model for near-threshold, based on SPICE
simulations of SRAM and logic cells. We use the variation-
aware leakage model from [32] to estimate leakage power.
We also model main memory dynamic power with an ap-
proach similar to that in [43].

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 200 300 400 500 600 700 800 900

P
ro

b
.
o
f
B

it
 F

a
ilu

re

Supply Voltage (mV)

Figure 6: Voltage versus probability of bit failure (log scale). As
Vdd is lowered, the probability of failure increases exponentially,
exceeding 2% at near-threshold.

Name Description
No Protection No error correction
SECDED Extended Hamming, 64 parity bits (H = 8)
Parichute 126 Parichute, 126 parity bits (H = 7, P = 2)
Parichute 252 Parichute, 252 parity bits (H = 7, P = 4)
Parichute 504 Parichute, 504 parity bits (H = 7, P = 8)
OLSC 128 Orthogonal Latin Square Codes, 128 parity bits
OLSC 256 Orthogonal Latin Square Codes, 256 parity bits
OLSC 512 Orthogonal Latin Square Codes, 512 parity bits

Table 2: Summary of the error correction techniques used.

7 Evaluation
This section evaluates Parichute and compares it to other
state of the art correction solutions. We show that its su-
perior correction ability results in very good cache capacity
in near-threshold. We also examine the implications of near-
threshold operation on system energy and show that Parichute
enables significantly lower energy operation. Finally, we ex-
amine the area, power, and delay overheads of the Parichute
prototype implementation.

7.1 Error Rates in SRAM Structures

We first examine the probability of SRAM bit failure as a
function of Vdd. Figure 6 shows results from Monte Carlo
simulations based on our error model and SPICE simulations.
Error rate increases rapidly as Vdd is lowered. Our experi-
ments focus on three near-threshold voltage levels: 375mV,
where the error rate is 2.3%; 350mV, with 5% error; and
337.5mV, with 7.3% error.

7.2 Parichute Error Correction Ability

To evaluate the correction ability of Parichute ECC, we per-
form Monte Carlo simulations over a large number of cache
lines with different numbers of bad bits. Errors have a uni-
form distribution. We compare Parichute to OLSC [10]
for different numbers of parity bits. We also compare to
SECDED error correction which uses 8 bits of parity to pro-
tect for 64 bits of data, for a total of 64 parity bits per line.
Table 2 lists the error correction schemes examined. All ex-
periments assume a cache line size of 512 bits.

Figures 7 and 8 show the fraction of successfully corrected
lines as a function of the number of bad bits per 512-bit data
line. Figure 7 shows the case where errors are confined to
the data bits, and the parity bits are error-free. This repre-

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
e
rc

e
n
t
o
f
L
in

e
s
 C

o
rr

e
c
ta

b
le

Number of Bad Bits per Line

Data Lines Only

Parichute 504
Parichute 252
Parichute 126

OLSC 512
OLSC 256
OLSC 128
SECDED

Figure 7: The probability of successful correction versus the number
of bit errors per data line, where parity is error-free.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
e
rc

e
n
t
o
f
L
in

e
s
 C

o
rr

e
c
ta

b
le

Number of Bad Bits per Line

Data and Parity Lines

Parichute 504
Parichute 252
Parichute 126

OLSC 512
OLSC 256
OLSC 128
SECDED

Figure 8: The probability of successful correction versus the number
of bit errors per cache line; both data and parity experience errors.

sents scenarios where parity is stored in more protected or
less vulnerable media than data. Note that Parichute consis-
tently outperforms OLSC for the same number of parity bits.

Figure 8 shows the same experiment for the case when both
data and parity bits may be corrupted. Data is assigned to
one cache line, while parity is assigned to a portion of an-
other, both with the same number of bad bits per line. Codes
with more parity bits will therefore be subjected to more er-
rors. This represents scenarios where data and parity are sub-
ject to a similar distribution of errors, as is the case with the
Parichute cache. In this case, the tolerance for errors is de-
creased somewhat; however, the relative correction ability of
the correction techniques is unchanged.

7.3 Parichute Cache Capacity

We now examine the effect that each error correction tech-
nique has on cache capacity at different voltages with differ-
ent error rates. All correction solutions disable lines that can-
not be corrected. For the no-protection case, a line is disabled
if it has a single error. Both SECDED and OLSC store their
parity bits in cache ways, similarly to Parichute.

Figure 9 shows cache capacity versus Vdd for all three cor-
rection algorithms. For Parichute and OLSC, we only show
the 252 and 256 cases respectively. For Parichute, 252 par-
ity bits out-performs 126 and 504 for maximizing capacity.
Although Parichute 504 can correct more bad bits, the extra
space required for parity offsets the gains. OLSC faces a sim-
ilar tradeoff. The Parichute protected cache has significantly
higher capacity than OLSC and SECDED as soon as Vdd is
lowered sufficiently to cause a large number of failed bits.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 250 300 350 400 450 500 550 600 650

C
a
c
h
e
 C

a
p
a
c
it
y
 (

%
)

Supply Voltage (mV)

Parichute 252
OLSC 256
SECDED

No Protection

Figure 9: Cache capacity versus supply voltage.

Cache capacity Latency
Vdd Unprot. SECDED OLSC 256 Parichute 252
900mV 100% 100% 100% 100% 0 cycles
375mV 7.05% 7.06% 23.5% 49.5% 4.11 cycles
350mV 1.22% 1.22% 6.54% 24.5% 3.75 cycles
337.5mV 0.187% 0.187% 0.863% 16.0% 5.74 cycles

Table 3: Cache capacity at nominal and NT supply voltages; average
Parichute decode latency at nominal and NT supply voltages.

Capacity at voltage
Variation awareness 375mV 350mV 337.5mV
None 44% 18% 9%
Good lines 45% 18% 9%
Good & Ugly lines 49% 24% 16%
Good, Ugly, sort Bad lines 50% 24% 16%

Table 4: The effects of increased variation awareness on cache ca-
pacity at three voltages in near-threshold.

Table 3 summarizes cache capacity for four Vdd values (one
nominal, three in near threshold) and shows the correspond-
ing error rates. At 375mV, Parichute has 50% of the nominal
cache capacity. This is double the cache capacity of OLSC
256 at the same voltage. At 350mV, Parichute has about 3.7×
the capacity of OLSC, while SECDED leaves the cache virtu-
ally useless. Finally, at 337.5mV, only Parichute has a usable
cache, with 16% of the nominal capacity.

Table 3 also shows average Parichute decode latency at
nominal and NT voltages. The decode latency is the number
of cycles required to correct a line. The latency at the differ-
ent voltages is averaged across all lines and all cache profiles.
At 900mV down to a safe Vccmin, we assume that the cache
requires no protection and therefore bypasses the corrector.
At NT, the corrector must be used for a large fraction of the
lines, and the CRC check must be performed for all lines, in-
curring a minimum latency of 1 cycle. Ugly lines are disabled
and do not contribute to line count or decode latency.

7.3.1 Impact of Variation-awareness on Cache Capacity

Table 4 shows cache capacity at three voltages in near-
threshold for different levels of variation awareness. No
awareness means all lines need protection. Adding the ability
to detect Good lines allows them to not receive parity pro-
tection, saving space and increasing capacity. Detecting Ugly
lines avoids wasting space on parity for uncorrectable lines.
Finally, placing parity in slightly better Bad lines improves
capacity marginally in moderate error conditions.

900 mV 375 mV 350 mV 337.5 mV
Configuration All SECDED OLSC Parichute SECDED OLSC Parichute SECDED OLSC Parichute
Frequency 3000 MHz 463 MHz 463 MHz 463 MHz 355 MHz 355 MHz 355 MHz 305 MHz 305 MHz 305 MHz
L2 capacity 2048 kB 128 kB 512 kB 1024 kB 0 kB 128 kB 512 kB 0 kB 0 kB 256 kB
L2 associativity 8 1 2 4 1 2 1
L2 hit (cycles) 10 11 11 14 11 14 16
DRAM access (cyc) 300 46 46 46 35 35 35 30 30 30

Table 5: Simulation parameters for nominal and near threshold configurations with L2 cache protected by SECDED, OLSC, and Parichute.

900 mV 375 mV 350 mV 337.5 mV

0

0.2

0.4

0.6

0.8

1

L
2
 M

is
s
 R

a
te

SECDED

cra
fty

m
cf

p
a
rse

r
g
zip

b
zip

2
vo

rte
x

tw
o
lf

w
u
p
w

ise
sw

im
m

g
rid

a
p
p
lu

a
p
si

e
q
u
a
ke

a
rt

OLSC

cra
fty

m
cf

p
a
rse

r
g
zip

b
zip

2
vo

rte
x

tw
o
lf

w
u
p
w

ise
sw

im
m

g
rid

a
p
p
lu

a
p
si

e
q
u
a
ke

a
rt

Parichute

cra
fty

m
cf

p
a
rse

r
g
zip

b
zip

2
vo

rte
x

tw
o
lf

w
u
p
w

ise
sw

im
m

g
rid

a
p
p
lu

a
p
si

e
q
u
a
ke

a
rt

Figure 10: L2 cache miss rates for SECDED, OLSC, and Parichute protected caches in nominal and near threshold configurations.

We find that awareness of Good and Ugly lines brings the
greatest improvement in cache capacity, almost doubling the
capacity of a Parichute cache at 337mV. Sorting Bad lines
and assigning parity to the better ones brings only a marginal
improvement in capacity, so we do not use this optimization.

7.4 Energy Reduction with Parichute Caches

In this section we evaluate the impact of Parichute on perfor-
mance and energy efficiency of a processor and memory sys-
tem. We consider all three cache correction algorithms and
examine the same three voltage levels in near-threshold. The
L2 cache capacity and associativity are scaled according to
the effective capacity for each correction algorithm. The av-
erage decode latency for Parichute at the three voltage levels
is factored into the L2 hit time. DRAM access time is as-
sumed to be constant, making relative DRAM latency lower
for lower clock frequency. The configurations are summa-
rized in Table 5, along with key simulation parameters.

We first examine the effects of each correction scheme
on L2 miss rates (ratio of misses to total accesses). Fig-
ure 11 shows the average L2 miss rate over the set of SPEC
CPU2000 benchmarks for SECDED, OLSC and Parichute.
As expected, the higher cache capacity afforded by Parichute
translates into a significantly lower L2 miss rate. At 350mV,
the average L2 miss rate for OLSC is double that of Parichute.
At the same voltage, SECDED has virtually no cache, so
its miss rate is 100% compared to 28% for Parichute. Fig-
ure 10 shows the breakdown of L2 misses by benchmark, for
SECDED, OLSC and Parichute.

The ability to lower supply voltage to near threshold and
still have a usable cache has a significant impact on energy ef-
ficiency. We examine energy required for the entire execution
of the benchmarks (average power times execution time). We
factor in the power cost of accessing main memory to account
for the energy implications of the higher L2 miss rate in near-

 0

 0.2

 0.4

 0.6

 0.8

 1
L
2
 M

is
s
 R

a
te

900 mV 375 mV 350 mV 337.5 mV

Parichute

OLSC

SECDED

Figure 11: Geometric mean of L2 cache miss rate across all bench-
marks, for each error correction scheme, at multiple voltages.

threshold. Figure 12 shows the energy at the three voltage
levels in near threshold relative to the energy at nominal for
SECDED, OLSC and Parichute. Although in near-threshold
power consumption is significantly lower, with SECDED pro-
tection, there is no reduction in energy. This is caused by the
very high number of L2 misses, which increase both execu-
tion time and average power due to the higher latency and
power consumption of accessing main memory.

OLSC does see a reduction in energy of about 20% at
375mV. However, as Vdd is lowered and the L2 cache size
decreases rapidly, the energy for OLSC starts to increase
again. Parichute is significantly more energy-efficient due to
its higher cache capacity, in spite of a slightly longer cache
access latency. It achieves a 30% energy reduction at 375mV,
and, as the voltage is lowered, its energy continues to de-
crease. At 350mV, Parichute achieves a 34% energy reduc-
tion compared to nominal Vdd, which is roughly 20% better
than what can be achieved with OLSC at that voltage. At
337mV, the energy with Parichute starts to increase again, but
it is still 25% lower than nominal, while OLSC and SECDED
are actually 11% higher than nominal.

Figures 12(b) and (c) show the energy behavior for two

0

0.5

1

1.5

900 375 350 337.5

E
n
e
rg

y
 R

e
la

ti
v
e
 t
o
 N

o
m

in
a
l

SPEC 2000 Geometric Mean

SECDED
OLSC

Parichute
0

0.5

1

1.5

900 375 350 337.5

Supply Voltage (mV)

Swim

0

1

2

3

900 375 350 337.5

TWolf

Figure 12: Geometric mean of total energy across all benchmarks relative to nominal (900 mV) and relative energy for swim, twolf for L2
caches protected by SECDED, OLSC, and Parichute.

900 mV 375 mV 350 mV 337.5 mV

 0

 0.5

 1

 1.5

 2

 2.5

 3

E
n
e
rg

y
 R

e
la

ti
v
e
 t
o
 N

o
m

in
a
l SECDED

cra
fty

m
cf

p
a
rse

r
g
zip

b
zip

2
vo

rte
x

tw
o
lf

w
u
p
w

ise
sw

im
m

g
rid

a
p
p
lu

a
p
si

e
q
u
a
ke

a
rt

OLSC

cra
fty

m
cf

p
a
rse

r
g
zip

b
zip

2
vo

rte
x

tw
o
lf

w
u
p
w

ise
sw

im
m

g
rid

a
p
p
lu

a
p
si

e
q
u
a
ke

a
rt

Parichute

cra
fty

m
cf

p
a
rse

r
g
zip

b
zip

2
vo

rte
x

tw
o
lf

w
u
p
w

ise
sw

im
m

g
rid

a
p
p
lu

a
p
si

e
q
u
a
ke

a
rt

Figure 13: Total energy for each voltage relative to nominal (900 mV) for L2 caches protected by SECDED, OLSC, and Parichute.

of the SPEC benchmarks: swim and twolf respectively.
Swim’s energy behavior is typical of most benchmarks. For
Parichute, it shows an energy reduction of about 38% relative
to nominal for both 375mV and 350mV cases. At 350mV, en-
ergy is also almost 20% lower than OLSC. The difference in
energy is due to the lower L2 miss rate with Parichute. From
Figure 10, we can see that, with OLSC, the L2 miss rate for
swim increases from 60% in nominal Vdd to about 80% at
350mV. With Parichute, on the other hand, the miss rate at
350mV is only about 8% higher than at nominal Vdd.

Twolf is much more sensitive to the decrease in cache size.
Its working set fits very well in the L2 cache at nominal volt-
age and therefore experiences a negligible miss rate. At lower
voltages, the L2 miss rate increases rapidly with OLSC to
80%, while it remains below 10% with Parichute at 350mV.
This difference in miss rates allows Parichute to have a 15%
lower energy compared to nominal Vdd, while OLSC expe-
riences a 40% increase in energy. As the voltage is lowered
further and the L2 miss rate increases significantly, Parichute
no longer achieves energy savings compared to nominal Vdd
even though it continues to fare much better than both OLSC
and SECDED. Figure 13 shows the total energy relative to
nominal Vdd for all the benchmarks.

7.5 Overheads

This section presents the area and power overheads ob-
tained from the synthesis of the Parichute prototype for 45nm
CMOS. We also examine cache tag overhead and the testing
time required for the variation-aware cache line classification.

7.5.1 Area and Power Overheads of Parichute Prototype

Table 6 provides a breakdown of the components and sub-
components of the complete Parichute implementation. For
synthesis, place, and route, timing was constrained to 1ns,
and the design successfully met that constraint with a posi-
tive slack of 0.05ns. Based on synthesis results, we report
standard cell count and die area. The decoder has the greatest
overhead, with a cell count roughly 3× that of the encoder.

The area for the entire design is very small at 0.056456
mm2, which is roughly 0.02% of the area of an Intel Core 2
Duo. Power consumption is also very small at 11mW.

Parichute hardware Synthesized Area
component standard cell count (µm2)
Parichute encoder: 7384 10828

CRC encoder 1938 2802
SECDED encoder block 5436 8149

Parichute decoder: 20244 45628
Parichute corrector: 3419 3739

Syndrome generator 183 251
Slice corrector 177 192

Total 27628 56456
Table 6: Subcomponents and components that make up Parichute
hardware. A Parichute encoder is made up of a CRC encoder and
a SECDED encoder block. A Parichute corrector is made up of 9
syndrome generators, 9 slice correctors, a CRC checker, and 780
flip-flops. A Parichute decoder is made up of 4 Parichute correctors.

7.5.2 Cache Tag Overhead

Parichute requires some information to be stored in the cache
tags. For an 8MB cache with 64-byte lines and a 48-bit phys-
ical address space, the tag array occupies about 5.9% of the
cache area. Each tag entry requires 28 address bits to which
Parichute adds 4 parity location bits (for half-line parity) and
16 CRC bits, for a total of 20 additional bits. While this in-
creases the size of the tag array by 65%, the total cache area
is only increased by about 4%. If cache entries are also pro-
tected by Parichute ECC, 1% is added to the total cache area
to store the parity for the tag.

7.5.3 Cache Testing for Variation-awareness

Classifying cache lines as Good, Bad or Ugly requires testing
their correctability. Based on our cache model, we compute
an estimate of how long it will take to fully test the entire
cache for reliable operation at NT. Assuming that the cache
operates error-free at voltages from nominal down to a safe
Vccmin [39], proactive error testing is required only at NT
voltage levels that will be used. At each voltage, each line
must be accessed 4 times (two writes, two reads), and we
consider only the three NT voltage levels, 375mV, 350mV
and 337.5mV. Based on our model of access time, complete
testing requires about 0.06 seconds. Without introducing sig-
nificant overhead, this testing could be performed during die
testing after manufacturing and/or at boot time in the field.

8 Related Work
Prior approaches to cache error correction have generally
focused on much lower error rates than those expected in
near-threshold. Some existing microprocessors use simple
SECDED-based ECC techniques [2, 23, 30], mostly intended
to deal with soft errors at high supply voltages.

Researchers have proposed a few cache-based error cor-
rection approaches targeted at higher error rates. Sun et al.
[34] developed a cache protection solution based on multi-bit
ECC (DECTED, Dual Error Correction Triple Error Detec-
tion). To reduce the space overhead, they do not maintain
parity bits for each cache line but instead maintain a fully as-
sociative cache that holds parity information for select lines
that are deemed to need protection. The size of the parity
cache is fixed, and, as a result, the number of lines that re-
ceive DECTED protection is limited. Overall, the error rate
that can be tolerated is about 0.5%, significantly below the
error rates in near-threshold.

Very recently, Wilkerson et al. [38] developed a technique
for coping with embedded DRAM errors that occur as a result
of variation-induced cell leakage. They use both SECDED
and BCH codes to protect data lines. When a cache line is
accessed that has too many errors for SECDED to correct,
a high-latency BCH correction is performed. Since this is a
rare occurrence, the contribution to average latency is small.
While this technique works very well for eDRAM, it would
be unsuitable for SRAMs at NT. At NT, the multi-bit error
rate is so high that the high-latency BCH correction would
add far too much to the average cache access latency.

Yoon et al. [40] devised a method for correcting SRAM
errors without storing ECC in dedicated SRAM cells. Instead,

ECC bits are stored in cacheable DRAM memory space. In
the place of ECC, a much less expensive error detection code
is stored in dedicated SRAM. This approach is very efficient
because only in the rare event that a line is both dirty and
suffers an error must the ECC code be fetched from DRAM
or elsewhere in the cache. Unfortunately, the very high error
rates at NT would impose too high of a demand for DRAM
access for this to be applicable to our needs.

Kim et al. [19] propose a 2D encoding scheme in which
rows and columns of an SRAM array are simultaneously pro-
tected by ECC codes of different strengths. By design, their
technique works very well for clustered errors with the ability
to correct error rates > 1% if the bad bits are fully clustered.
The technique is less effective if the errors are more evenly
distributed. The area overhead for parity storage is fixed and
cannot be scaled down in error-free operation.

Other works [9, 14] have proposed circuit solutions for im-
proving the reliability of SRAM cells in near-threshold. They
propose replacing the standard 6T SRAM cell with a more
error-resilient 8T cell. Our solution relies on error correction
and has the advantage that at nominal voltage the Parichute
cache acts as a regular cache without the power and area over-
head of the larger SRAM cells.

9 Conclusions
In this paper we have introduced Parichute ECC, a novel for-
ward error correction scheme, and demonstrated its robust-
ness to error rates as high as 7% that occur at near-threshold
supply voltages. We have shown that a Parichute-protected
cache can maintain high storage capacity at error rates that
would render less protected caches virtually useless. We have
also shown that a system with a Parichute-enabled L2 cache
can achieve a 34% reduction in energy compared to a system
operating at nominal voltage.

References
[1] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy, “Process

variation in embedded memories: failure analysis and varia-
tion aware architecture,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 9, pp. 1804–1814, September 2005.

[2] H. Ando, K. Seki, S. Sakashita, M. Aihara, Kan, and K. Imada,
“Accelerated testing of a 90nm sparc64 v microprocessor for
neutron ser,” IEEE Workshop on Silicon Errors in Logic - Sys-
tem Effects (SELSE), 2007.

[3] C. Berrou and A. Glavieux, “Near optimum error correcting
coding and decoding: Turbo-Codes,” IEEE Transactions on
Communications, vol. 44, no. 10, pp. 1261–1271, 1996.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi,
and V. De, “Parameter variations and impact on circuits and
microarchitecture,” in Design Automation Conference, June
2003.

[5] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A frame-
work for architectural-level power analysis and optimizations,”
in International Symposium on Computer Architecture, June
2000.

[6] D. Burnett, J. Higman, A. Hoefler, B. Li, and P. Kuhn, “Varia-
tion in natural threshold voltage of NVM circuits due to dopant
fluctuations and its impact on reliability,” in International Elec-
tron Devices Meeting, 2002, pp. 529–534.

[7] B. Calhoun and A. Chandrakasan, “A 256-kb 65-nm sub-
threshold SRAM design for ultra-low-voltage operation,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 680–
688, February 2007.

[8] A. Chandrakasan, D. Daly, D. Finchelstein, J. Kwong, Y. Ra-
madass, M. Sinangil, V. Sze, and N. Verma, “Technologies
for ultradynamic voltage scaling,” Proceedings of the IEEE,
vol. 98, no. 2, pp. 191–214, February 2010.

[9] G. K. Chen, D. Blaauw, T. Mudge, D. Sylvester, and N. S. Kim,
“Yield-driven near-threshold SRAM design,” in International
Conference on Computer-aided Design, 2007, pp. 660–666.

[10] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-
L. Lu, “Improving cache lifetime reliability at ultra-low volt-
ages,” in International Symposium on Microarchitecture, De-
cember 2009.

[11] K. Constantinides, O. Mutlu, and T. Austin, “Online design
bug detection: RTL analysis, flexible mechanisms, and eval-
uation,” in International Symposium on Microarchitecture,
November 2008, pp. 282–293.

[12] T. Dell, “A white paper on the benefits of chipkill-correct ECC
for PC server main memory,” IBM Microelectronics Division
Whitepaper, 1997.

[13] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming Moore’s
law through energy efficient integrated circuits,” Proceedings
of the IEEE, vol. 98, no. 2, pp. 253–266, February 2010.

[14] R. G. Dreslinski, G. K. Chen, T. Mudge, D. Blaauw,
D. Sylvester, and K. Flautner, “Reconfigurable energy efficient
near threshold cache architectures,” in International Sympo-
sium on Microarchitecture, December 2008, pp. 459–470.

[15] P. Elias, “Error-free coding,” IRE Professional Group on Infor-
mation Theory, vol. 4, no. 4, pp. 29–37, 1954.

[16] Y. He and P. Ching, “Performance evaluation of adaptive
two-dimensional turbo product codes composed of hamming
codes,” in International Conference on Integration Technology,
March 2007, pp. 103–107.

[17] H. Y. Hsiao, D. Bossen, and R. Chien, “Orthogonal latin square
codes,” IBM Journal of Research and Development, vol. 14,
no. 4, pp. 390–394, July 1970.

[18] “International Technology Roadmap for Semiconductors
(2009),” http://www.itrs.net.

[19] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-
bit error tolerant caches using two-dimensional error coding,”
in International Symposium on Microarchitecture, December
2007, pp. 197–209.

[20] P. Koopman and T. Chakravarty, “Cyclic redundancy code
(CRC) polynomial selection for embedded networks,” in In-
ternational Conference on Dependable Systems and Networks,
June 2004, pp. 145–154.

[21] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey,
“Ultralow-power design in near-threshold region,” Proceed-
ings of the IEEE, vol. 98, no. 2, pp. 237–252, February 2010.

[22] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican,
W. Parks, and S. Naffziger, “Power and temperature control
on a 90-nm Itanium family processor,” IEEE Journal of Solid-
State Circuits, vol. 41, no. 1, pp. 229–237, January 2006.

[23] J. Mitchell, D. Henderson, and G. Ahrens, “IBM POWER5
processor-based servers: A highly available design for
business-critical applications,” IBM Technical Report, 2006.

[24] T. K. Moon, Error Correction Coding: Mathematical Methods
and Algorithms. Wiley-Interscience, 2005.

[25] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical de-
sign and optimization of SRAM cell for yield enhancement,” in
International Conference on Computer-aided Design, Wash-
ington, DC, USA, 2004, pp. 10–13.

[26] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” HP Labs, Tech.
Rep. HPL-2009-85, 2009.

[27] Nangate, “Nangate open cell library,” http://www.nangate.
com/.

[28] E. Normand, “Single event upset at ground level,” IEEE Trans-
actions on Nuclear Science, vol. 43, no. 6, pp. 2742–2750,
1996.

[29] R. Pyndiah, “Near-optimum decoding of product codes: Block
turbo codes,” IEEE Transactions on Communications, vol. 46,
no. 8, pp. 1003–1010, 1998.

[30] N. Quach, “High availability and reliability in the Itanium pro-
cessor,” IEEE Micro, vol. 20, no. 5, pp. 61–69, 2000.

[31] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
K. Strauss, S. Sarangi, P. Sack, and P. Montesinos, “SESC Sim-
ulator,” http://sesc.sourceforge.net.

[32] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Ti-
wari, and J. Torrellas, “VARIUS: A model of parameter vari-
ation and resulting timing errors for microarchitects,” IEEE
Transactions on Semiconductor Manufacturing, vol. 21, no. 1,
February 2008.

[33] L. Spainhower and T. A. Gregg, “IBM S/390 parallel enterprise
server G5 fault tolerance: A historical perspective,” IBM Jour-
nal of Research and Development, vol. 43, no. 5, pp. 863–873,
1999.

[34] H. Sun, N. Zheng, and T. Zhang, “Realization of L2 cache de-
fect tolerance using multi-bit ECC,” in Defect and Fault Toler-
ance of VLSI Systems, October 2008, pp. 254–262.

[35] Synopsys, “Formality,” http://synopsys.com.
[36] Synopsys, “Synopsys design compiler,” http://synopsys.com.
[37] J. Torrellas, “Architectures for extreme-scale computing,”

IEEE Computer, vol. 42, pp. 28–35, November 2009.
[38] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. So-

masekhar, and S.-L. Lu, “Reducing cache power with low-cost,
multi-bit error-correcting codes,” in International Symposium
on Computer Architecture, June 2010.

[39] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khel-
lah, and S.-L. Lu, “Trading off cache capacity for reliability to
enable low voltage operation,” in International Symposium on
Computer Architecture, June 2008, pp. 203–214.

[40] D. Yoon and M. Erez, “Memory mapped ECC: Low-cost er-
ror protection for last level caches,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 116–127, 2009.

[41] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A sub-
200mV 6T SRAM in 0.13µm CMOS,” in International Solid-
State Circuits Conference, 2007.

[42] W. Zhao and Y. Cao, “New generation of predictive technol-
ogy model for sub-45nm design exploration,” in International
Symposium on Quality Electronic Design, 2006, pp. 585–590.

[43] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technol-
ogy,” in International Symposium on Computer Architecture,
June 2009, pp. 14–23.

